您好、欢迎来到现金彩票网!
当前位置:众彩网 > 分支限界搜索 >

算法程序设计题目有没有?

发布时间:2019-05-26 07:45 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。

  一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。如果所有的兔子都不死去,问到第 12 个月时,该饲养场共有兔子多少只?

  分析: 这是一个典型的递推问题。我们不妨假设第 1 个月时兔子的只数为 u 1 ,第 2 个月时兔子的只数为 u 2 ,第 3 个月时兔子的只数为 u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有

  对应 u n 和 u n - 1 ,定义两个迭代变量 y 和 x ,可将上面的递推公式转换成如下迭代关系:

  让计算机对这个迭代关系重复执行 11 次,就可以算出第 12 个月时的兔子数。参考程序如下:

  问题描述:有不同价值、不同重量的物品n件,求从这n件物品中选取一部分物品的选择方案,使选中物品的总重量不超过指定的限制重量,但选中物品的价值之和最大。

  前文主要介绍了动态规划的一些理论依据,我们将前文所说的具有明显的阶段划分和状态转移方程的动态规划称为标准动态规划,这种标准动态规划是在研究多阶段决策问题时推导出来的,具有严格的数学形式,适合用于理论上的分析。在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段法反而麻烦。一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。

  因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。

  (1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。注意这若干个阶段一定要是有序的或者是可排序的(即无后向性),否则问题就无法用动态规划求解。

  (2)选择状态:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

  (3)确定决策并写出状态转移方程:之所以把这两步放在一起,是因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以,如果我们确定了决策,状态转移方程也就写出来了。但事实上,我们常常是反过来做,根据相邻两段的各状态之间的关系来确定决策。

  (4)写出规划方程(包括边界条件):动态规划的基本方程是规划方程的通用形式化表达式。

  一般说来,只要阶段、状态、决策和状态转移确定了,这一步还是比较简单的。动态规划的主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。根据动态规划的基本方程可以直接递归计算最优值,但是一般将其改为递推计算,实现的大体上的框架如下:

  但是,实际应用当中经常不显式地按照上面步骤设计动态规划,而是按以下几个步骤进行:

  步骤(1)~(3)是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤(4)可以省略,若需要求出问题的一个最优解,则必须执行步骤(4)。此时,在步骤(3)中计算最优值时,通常需记录更多的信息,以便在步骤(4)中,根据所记录的信息,快速地构造出一个最优解。

  (2) 数组b[ ],b[k]表示第k列右高左低斜线) 数组 c[ ],c[k]表示第k列左高右低斜线上没有皇后;

  棋盘中同一右高左低斜线上的方格,他们的行号与列号之和相同;同一左高右低斜线上的方格,他们的行号与列号之差均相同。

  初始时,所有行和斜线行配置第一个皇后开始,在第m列col[m]行放置了一个合理的皇后后,准备考察第m+1列时,在数组a[

  ]、b[ ]和c[ ]中为第m列,col[m]行的位置设定有皇后标志;当从第m列回溯到第m-1列,并准备调整第m-1列的皇后配置时,清除在数组a[

  ]、b[ ]和c[ ]中设置的关于第m-1列,col[m-1]行有皇后的标志。一个皇后在m列,col[m]行方格内配置是合理的,由数组a[ ]、b[ ]和c[ ]对应位置的值都为1来确定。细节见以下程序:

  试探法找解算法也常常被编写成递归函数,下面两程序中的函数queen_all()和函数queen_one()能分别用来解皇后问题的全部解和一个解。

  采用递归方法找一个解与找全部解稍有不同,在找一个解的算法中,递归算法要对当前候选解最终是否能成为解要有回答。当它成为最终解时,递归函数就不再递归试探,立即返回;若不能成为解,就得继续试探。设函数queen_one()返回1表示找到解,返回0表示当前候选解不能成为解。细节见以下函数。

  这是一种用于求解组合优化问题的排除非解的搜索算法。类似于回溯法,分枝定界法在搜索解空间时,也经常使用树形结构来组织解空间。然而与回溯法不同的是,回溯算法使用深度优先方法搜索树结构,而分枝定界一般用宽度优先或最小耗费方法来搜索这些树。因此,可以很容易比较回溯法与分枝定界法的异同。相对而言,分枝定界算法的解空间比回溯法大得多,因此当内存容量有限时,回溯法成功的可能性更大。

  算法思想:分枝定界(branch and bound)是另一种系统地搜索解空间的方法,它与回溯法的主要区别在于对E-节点的扩充方式。每个活节点有且仅有一次机会变成E-节点。当一个节点变为E-节点时,则生成从该节点移动一步即可到达的所有新节点。在生成的节点中,抛弃那些不可能导出(最优)可行解的节点,其余节点加入活节点表,然后从表中选择一个节点作为下一个E-节点。从活节点表中取出所选择的节点并进行扩充,直到找到解或活动表为空,扩充过程才结束。

  1) 先进先出(F I F O) 即从活节点表中取出节点的顺序与加入节点的顺序相同,因此活

  2) 最小耗费或最大收益法在这种模式中,每个节点都有一个对应的耗费或收益。如果查找

  一个具有最小耗费的解,则活节点表可用最小堆来建立,下一个E-节点就是具有最小耗费

  的活节点;如果希望搜索一个具有最大收益的解,则可用最大堆来构造活节点表,下一个

  用一个队列Q来存放活结点表,Q中weight表示每个活结点所相应的当前载重量。当weight=-1时,表示队列已达到解空间树同一层结点的尾部。

  算法首先检测当前扩展结点的左儿子结点是否为可行结点。如果是则将其加入到活结点队列中。然后将其右儿子结点加入到活结点队列中(右儿子结点一定是可行结点)。2个儿子结点都产生后,当前扩展结点被舍弃。

  活结点队列中的队首元素被取出作为当前扩展结点,由于队列中每一层结点之后都有一个尾部标记-1,故在取队首元素时,活结点队列一定不空。当取出的元素是-1时,再判断当前队列是否为空。如果队列非空,则将尾部标记-1加入活结点队列,算法开始处理下一层的活结点。

http://gamesbaby.net/fenzhixianjiesousuo/218.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有